415 research outputs found

    Discovering Affordances Through Perception and Manipulation

    Get PDF
    International audienceConsidering perception as an observation process only is the very reason for which robotic perception methods are to date unable to provide a general capacity of scene understanding. Related work in neuroscience has shown that there is a strong relationship between perception and action. We believe that considering perception in relation to action requires to interpret the scene in terms of the agent's own potential capabilities. In this paper, we propose a Bayesian approach for learning sensorimotor representations through the interaction between action and observation capabilities. We represent the notion of affordance as a probabilistic relation between three elements: objects, actions and effects. Experiments for affordances discovery were performed on a real robotic platform in an unsupervised way assuming a limited set of innate capabilities. Results show dependency relations that connect the three elements in a common frame: affordances. The increasing number of interactions and observations results in a Bayesian network that captures the relationships between them. The learned representation can be used for prediction tasks

    Ras-p53 genomic cooperativity as a model to investigate mechanisms of innate immune regulation in gastrointestinal cancers

    Get PDF
    Despite increasingly thorough mechanistic understanding of the dominant genetic drivers of gastrointestinal (GI) tumorigenesis (e.g., Ras/Raf, TP53, etc.), only a small proportion of these molecular alterations are therapeutically actionable. In an attempt to address this therapeutic impasse, our group has proposed an innovative extreme outlier model to identify novel cooperative molecular vulnerabilities in high-risk GI cancers which dictate prognosis, correlate with distinct patterns of metastasis, and define therapeutic sensitivity or resistance. Our model also proposes comprehensive investigation of their downstream transcriptomic, immunomic, metabolic, or upstream epigenomic cellular consequences to reveal novel therapeutic targets in previously “undruggable” tumors with high-risk genomic features. Leveraging this methodology, our and others’ data reveal that the genomic cooperativity between Ras and p53 alterations is not only prognostically relevant in GI malignancy, but may also represent the incipient molecular events that initiate and sustain innate immunoregulatory signaling networks within the GI tumor microenvironment, driving T-cell exclusion and therapeutic resistance in these cancers. As such, deciphering the unique transcriptional programs encoded by Ras-p53 cooperativity that promote innate immune trafficking and chronic inflammatory tumor-stromal-immune crosstalk may uncover immunologic vulnerabilities that could be exploited to develop novel therapeutic strategies for these difficult-to-treat malignancies

    Identifying and characterizing COPD patients in US managed care. A retrospective, cross-sectional analysis of administrative claims data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chronic obstructive pulmonary disease (COPD) is the fourth leading cause of death among US adults and is projected to be the third by 2020. In anticipation of the increasing burden imposed on healthcare systems and payers by patients with COPD, a means of identifying COPD patients who incur higher healthcare utilization and costs is needed.</p> <p>Methods</p> <p>This retrospective, cross-sectional analysis of US managed care administrative claims data describes a practical way to identify COPD patients. We analyze 7.79 million members for potential inclusion in the COPD cohort, who were continuously eligible during a 1-year study period. A younger commercial population (7.7 million) is compared with an older Medicare population (0.115 million). We outline a novel approach to stratifying COPD patients using "complexity" of illness, based on occurrence of claims for given comorbid conditions. Additionally, a unique algorithm was developed to identify and stratify COPD exacerbations using claims data.</p> <p>Results</p> <p>A total of 42,565 commercial (median age 56 years; 51.4% female) and 8507 Medicare patients (median 75 years; 53.1% female) were identified as having COPD. Important differences were observed in comorbidities between the younger commercial versus the older Medicare population. Stratifying by complexity, 45.0%, 33.6%, and 21.4% of commercial patients and 36.6%, 35.8%, and 27.6% of older patients were low, moderate, and high, respectively. A higher proportion of patients with high complexity disease experienced multiple (≥2) exacerbations (61.7% commercial; 49.0% Medicare) than patients with moderate- (56.9%; 41.6%), or low-complexity disease (33.4%; 20.5%). Utilization of healthcare services also increased with an increase in complexity.</p> <p>Conclusion</p> <p>In patients with COPD identified from Medicare or commercial claims data, there is a relationship between complexity as determined by pulmonary and non-pulmonary comorbid conditions and the prevalence of exacerbations and utilization of healthcare services. Identification of COPD patients at highest risk of exacerbations using complexity stratification may facilitate improved disease management by targeting those most in need of treatment.</p

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types

    Modification of the FoxP3 Transcription Factor Principally Affects Inducible T Regulatory Cells in a Model of Experimental Autoimmune Encephalomyelitis

    Get PDF
    T regulatory (Treg) cells expressing the transcription factor FoxP3 play a key role in protection against autoimmune disease. GFP-FoxP3 reporter mice have been used widely to study the induction, function and stability of both thymically- and peripherally-induced Treg cells. The N-terminal modification of FoxP3, however, affects its interaction with transcriptional co-factors; this can alter Treg cell development and function in certain self-antigen specific animal models. Interestingly, Treg cell function can be negatively or positively affected, depending on the nature of the model. In this study, we focused on the effect of the GFP-FoxP3 reporter on Treg cell development and function in the Tg4 mouse model. In this model, T cells express a transgenic T cell receptor (TCR) specific for the Myelin Basic Protein (MBP) peptide Ac1-9, making the animals susceptible to experimental autoimmune encephalomyelitis (EAE), a disease akin to multiple sclerosis in humans. Unlike diabetes-susceptible mice, Tg4 FoxP3(gfp) mice did not develop spontaneous autoimmune disease and did not demonstrate augmented susceptibility to induced disease. Concurrently, thymic generation of natural Treg cells was not negatively affected. The induction of FoxP3 expression in naive peripheral T cells was, however, significantly impaired as a result of the transgene. This study shows that the requirements for the interaction of FoxP3 with co-factors, which governs its regulatory ability, differ not only between natural and inducible Treg cells but also between animal models of diseases such as diabetes and EAE

    4D electron microscopy of T cell activation

    Get PDF
    T cells can be controllably stimulated through antigen-specific or nonspecific protocols. Accompanying functional hallmarks of T cell activation can include cytoskeletal reorganization, cell size increase, and cytokine secretion. Photon-induced near-field electron microscopy (PINEM) is used to image and quantify evanescent electric fields at the surface of T cells as a function of various stimulation conditions. While PINEM signal strength scales with multiple of the biophysical changes associated with T cell functional activation, it mostly strongly correlates with antigen-engagement of the T cell receptors, even under conditions that do not lead to functional T cell activation. PINEM image analysis suggests that a stimulation-induced reorganization of T cell surface structure, especially over length scales of a few hundred nanometers, is the dominant contributor to these PINEM signal changes. These experiments reveal that PINEM can provide a sensitive label-free probe of nanoscale cellular surface structures

    A method to study the effect of bronchodilators on smoke retention in COPD patients: study protocol for a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chronic obstructive pulmonary disease (COPD) is a common disease, associated with cardiovascular disease. Many patients use (long-acting) bronchodilators, whilst they continue smoking alongside. We hypothesised an interaction between bronchodilators and smoking that enhances smoke exposure, and hence cardiovascular disease. In this paper, we report our study protocol that explores the fundamental interaction, i.e. smoke retention.</p> <p>Method</p> <p>The design consists of a double-blinded, placebo-controlled, randomised crossover trial, in which 40 COPD patients smoke cigarettes during both undilated and maximal bronchodilated conditions. Our primary outcome is the retention of cigarette smoke, expressed as tar and nicotine weight. The inhaled tar weights are calculated from the correlated extracted nicotine weights in cigarette filters, whereas the exhaled weights are collected on Cambridge filters. We established the inhaled weight calculations by a pilot study, that included paired measurements from several smoking regimes. Our study protocol is approved by the local accredited medical review ethics committee.</p> <p>Discussion</p> <p>Our study is currently in progress. The pilot study revealed valid equations for inhaled tar and nicotine, with an R<sup>2 </sup>of 0.82 and 0.74 (p < 0.01), respectively. We developed a method to study pulmonary smoke retentions in COPD patients under the influence of bronchodilation which may affect smoking-related disease. This trial will provide fundamental knowledge about the (cardiovascular) safety of bronchodilators in patients with COPD who persist in their habit of cigarette smoking.</p> <p>Trial registration</p> <p>ClinicalTrials.gov: <a href="http://www.clinicaltrials.gov/ct2/show/NCT00981851">NCT00981851</a></p

    Transplacental Passage of Interleukins 4 and 13?

    Get PDF
    The mechanisms by which prenatal events affect development of adult disease are incompletely characterized. Based on findings in a murine model of maternal transmission of asthma risk, we sought to test the role of the pro-asthmatic cytokines interleukin IL-4 and -13. To assess transplacental passage of functional cytokines, we assayed phosphorylation of STAT-6, a marker of IL-4 and -13 signaling via heterodimeric receptor complexes which require an IL-4 receptor alpha subunit. IL-4 receptor alpha−/− females were mated to wild-type males, and pregnant females were injected with supraphysiologic doses of IL-4 or 13. One hour after injection, the receptor heterozygotic embryos were harvested and tissue nuclear proteins extracts assayed for phosphorylation of STAT-6 by Western blot. While direct injection of embryos produced a robust positive control, no phosphorylation was seen after maternal injection with either IL-4 or -13, indicating that neither crossed the placenta in detectable amounts. The data demonstrate a useful approach to assay for transplacental passage of functional maternal molecules, and indicate that molecules other than IL-4 and IL-13 may mediate transplacental effects in maternal transmission of asthma risk
    corecore